The vertex size-Ramsey number

نویسندگان

  • Andrzej Dudek
  • Linda Lesniak
چکیده

In this paper, we study an analogue of size-Ramsey numbers for vertex colorings. For a given number of colors r and a graph G the vertex size-Ramsey number of G, denoted by R̂v(G, r), is the least number of edges in a graph H with the property that any r-coloring of the vertices of H yields a monochromatic copy of G. We observe that Ωr(∆n) = R̂v(G, r) = Or(n ) for any G of order n and maximum degree ∆, and prove that for some graphs these bounds are tight. On the other hand, we show that even 3-regular graphs can have nonlinear vertex size-Ramsey numbers. Finally, we prove that R̂v(T, r) = Or(∆ n) for any tree of order n and maximum degree ∆, which is only off by a factor of ∆ from the best possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Sizes of Induced Subgraphs of Ramsey Graphs

An n-vertex graph G is c-Ramsey if it contains neither a complete nor an empty induced subgraph of size greater than c log n. Erdős, Faudree and Sós conjectured that every c-Ramsey graph with n vertices contains Ω(n5/2) induced subgraphs any two of which differ either in the number of vertices or in the number of edges, i.e. the number of distinct pairs (|V (H)|, |E(H)|), as H ranges over all i...

متن کامل

Large Chromatic Number and Ramsey Graphs

Let Q(n, χ) denote the minimum clique size an n-vertex graph can have if its chromatic number is χ . Using Ramsey graphs we give an exact, albeit implicit, formula for the case χ ≥ (n + 3)/2.

متن کامل

On the connectivity of extremal Ramsey graphs

An (r, b)-graph is a graph that contains no clique of size r and no independent set of size b. The set of extremal Ramsey graphs ERG(r, b) consists of all (r, b)-graphs with R(r, b) − 1 vertices, where R(r, b) is the classical Ramsey number. We show that any G ∈ ERG(r, b) is r − 1 vertex connected and 2r − 4 edge connected for r, b ≥ 3.

متن کامل

Ramsey numbers of ordered graphs

An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 339  شماره 

صفحات  -

تاریخ انتشار 2016