The vertex size-Ramsey number
نویسندگان
چکیده
In this paper, we study an analogue of size-Ramsey numbers for vertex colorings. For a given number of colors r and a graph G the vertex size-Ramsey number of G, denoted by R̂v(G, r), is the least number of edges in a graph H with the property that any r-coloring of the vertices of H yields a monochromatic copy of G. We observe that Ωr(∆n) = R̂v(G, r) = Or(n ) for any G of order n and maximum degree ∆, and prove that for some graphs these bounds are tight. On the other hand, we show that even 3-regular graphs can have nonlinear vertex size-Ramsey numbers. Finally, we prove that R̂v(T, r) = Or(∆ n) for any tree of order n and maximum degree ∆, which is only off by a factor of ∆ from the best possible.
منابع مشابه
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملSizes of Induced Subgraphs of Ramsey Graphs
An n-vertex graph G is c-Ramsey if it contains neither a complete nor an empty induced subgraph of size greater than c log n. Erdős, Faudree and Sós conjectured that every c-Ramsey graph with n vertices contains Ω(n5/2) induced subgraphs any two of which differ either in the number of vertices or in the number of edges, i.e. the number of distinct pairs (|V (H)|, |E(H)|), as H ranges over all i...
متن کاملLarge Chromatic Number and Ramsey Graphs
Let Q(n, χ) denote the minimum clique size an n-vertex graph can have if its chromatic number is χ . Using Ramsey graphs we give an exact, albeit implicit, formula for the case χ ≥ (n + 3)/2.
متن کاملOn the connectivity of extremal Ramsey graphs
An (r, b)-graph is a graph that contains no clique of size r and no independent set of size b. The set of extremal Ramsey graphs ERG(r, b) consists of all (r, b)-graphs with R(r, b) − 1 vertices, where R(r, b) is the classical Ramsey number. We show that any G ∈ ERG(r, b) is r − 1 vertex connected and 2r − 4 edge connected for r, b ≥ 3.
متن کاملRamsey numbers of ordered graphs
An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016